NSF Compiler Workshop
September 5, 2001

Jack Davidson

Department of Computer
Science

University of Virginia



Two research opportunities

« Compilation for high-performance
embedded systems

« Compilation for heterogeneous,
networked computers-Internet
computing



Compilation for Embedded
Systems

« Why Is this important?
— Embedded systems are key building
blocks of vital national infrastructure

— Embedded processors are key
components in a wide array of
consumer devices



Compilation for Embedded
Systems

 What’s the problem?

— Mainframe/desktop compilation
paradigm is inadequate for embedded
systems

e Result

— Embedded software is still written In
assembly language
 Higher development and maintenance costs
e Slower time to market
e Hinders innovation



Compilation for Embedded
Systems

« Why Is compilation for embedded
systems hard(er)?

— Many processor variants each with
special features

— Cross-cutting constraints of speed,
power, and size

— Very performance and cost sensitive
— Custom and semi-custom processors



Compilation for Networked
Systems

« Why Is this important?
— Duh!!
— Internet computing

— Ubiquitious computing (clusters, motes,
swarms, hives, herds)




Compilation for Networked
Systems

« What’s the problem?

— Mainframe/desktop compilation
paradigm is inadequate for networked
systems

e Result

— The potential of networked systems has
not been fully realized



Compilation for Networked
Systems

« Why Is compilation for networked
systems hard(er)?

— Heterogeneous platforms

— Dynamic environment (changing QoS
and resources)

— Code is injected dynamically from
different sources

— Often working at the binary level
— Continuous operation



Meeting these challenges

 Move from static to more dynamic
compilation approaches



Meeting these challenges

e Embedded systems: new compilation
framework

- Adaptive compilation-compiler
configured at compile-time for
application and target

- Different granularities of compilation
- New optimization algorithms



VISTA

« Framework for building reconfigurable,
adaptive compilers
— Optimization backplane for compile-time
flexibility
— Language for compile-time configuration of the
backplane

— Constraint language for specifying code
requirements

— Interactive system for viewing and controlling
and understanding optimizer actions

— Varying granularity of optimization (program,
function, loop, basic block(s))



Meeting these challenges

 Networked computing: software dynamic
translation (SDT) (alteration of a running
program to achieve some objective)
— Improve performance (Dynamo)

— Overcome economic barriers to hardware
Innovation (Transmeta)

— Apply application-specific ISA improvements

— Adapt to changes (power, Qo0S, resource
availability)

— Improve security and robustness of code



Strata: Retargetable SDT

Framework
« Base VM implements
a simple SDT
Somext Strata Virtual Machine providing common
services
@ Fragmen P oo Programmer
! i i Implements new SDTs
Yes o e by customizing the
lﬁ Decode :E VM
Gone @ e .« VM is customized by
ves - overriding functions
--l $ In the target interface
Host CPU (Executing Translated Code from Cache) ° CU rren“y targ eted to

SPARC and MIPS.
ARM and X86 next



Research challenges
(Partial)

e Adaptive/reconfigurable compilation
— New optimization approaches/algorithms

— Strategies for automatically configuring the
compiler

— Better MDs

o Software dynamic translation

— Innovative applications of SDT (security, fault
tolerance, correctness, code compression)

— Reducing SDT overhead

— Performance analysis and use
— Hardware support for SDT

— Better binary-level tools



